
Curating Very Large Biomedical Image Datasets For Librarian-In-The-Loop Deep Learning

The Center for Digital Research & Scholarship (CDRS) at Virginia Tech Libraries requests $149,216
from IMLS for a two-year National Leadership Planning Grant to prototype a data curation pipeline for
very large biomedical images. Using image data generated from the Focused Ion Beam Scanning Electron
Microscopy Collaboration Core (F-SCC) at Yale University School of Medicine, we will explore the
problem space of AI-assisted human-in-the-loop segmentation of nanoscale biomedical images.
Librarians will work closely with domain scientists to identify and clarify key challenges by more
thoroughly replicating, comparing, and extending two complementary research and other related projects.
This project will lay the foundation for the implementation project where library technologists and
informationists will be able to contribute key expertise to cutting-edge science.

1. Project Justification

1.1 Program Goal and Objectives

This project broadly addresses Goal 3 of the National Leadership Planning Grant (NLG) program, which
seeks to enhance access to, preserve, and disseminate information and collections through digital
technologies. Specifically, the project focuses on Objective 3.2, which aims to explore innovative
approaches to data management, including data curation, based on collaborative efforts between librarians
and researchers.

1.2 Statement of Broad Need

The broadly significant need addressed by this project arises from two different sides.

On one hand, academic and research libraries need to play a more active role in cutting edge science in
order to gain recognition as a qualified research partner (Lacchia, 2021). Many decades ago the
established library service model has already shown signs of disconnect from the patron’s fast-changing
information needs. Libraries have been eager to explore new roles, new models of operation, and new
growth areas (Jaguszewski & Williams, 2013; Gwyer, 2015; Kamposiori, 2017; Meier, 2016; Lewis,
2016; T. Hickerson & Brosz, 2019; Evidence Base, 2021; Ducas et al., 2020; Zhang et al., 2021;
Fernández-Marcial & González-Solar, 2021; H. T. Hickerson et al., 2022). Library administrators are
under increasing pressure to justify the spending and to articulate more engaging and relevant value
propositions (Cox, 2018; Lewis, 2016; Murray & Ireland, 2018; McGinnis et al., 2022). A common vision
emerged about 10 years ago (Association of Research Libraries, 2010, 2016), claiming that by 2033 the
library should “have shifted from its role as a knowledge service provider … to become a collaborative
partner”.

Only 10 years left, the ARL 2033 vision is still far from reality. It requires librarians to significantly
expedite and deepen research collaborations and generate higher impact (Evidence Base, 2021). The
library’s traditional collaboration role as a research supporter must therefore be upgraded to a specialist
who directly contributes critical and sought-after resources, skills, and expertise, or even to an
idea-generating research leader (Robinson-Garcia et al., 2020). Because a regular service provider is
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rarely considered an equal partner in research (Bright, 2018; Weng & Murray, 2020), the library’s
relevance and embeddedness (Dewey, 2004) should be measured less by our physical distance from the
collaborators (Carroll et al., 2020; Drewes & Hoffman, 2010), but more by how closely related our
substantive research contributions are to the core research idea and its realization. Likewise, the impact
librarians can generate is closely related to the impact of the discoveries we facilitate, thus the urgent need
for us to engage in cutting-edge science.

On the other hand, the cutting edge science also urgently needs help from informationists and
technologists to realize its potential. Data-intensive scientific discovery, also known as the fourth
paradigm (Hey, 2009), has now been broadly accepted as an important driver for innovation, yet we
cannot expect every neuroscientist and astrophysicist to also become an expert in big data, deep learning,
and cloud computing. Task specialization associated with modern science naturally requires more
cross-disciplinary collaboration, but currently the most qualified experts in big data, deep learning, and
cloud computing are often too deeply engaged in their own domain challenges to have the bandwidth for
much broader collaboration. This opens up a narrow window for qualified librarians to play the specialist
role in scientific collaboration. Fortunately, major tools and technologies used in data-intensive science
are widely available and also broadly overlap, at least conceptually, with those used in library big data
management. Some of the skills required to build up the groundwork, e.g., labeling, categorization,
pattern recognition, and operating image manipulation tools, are not as insurmountable as many would
have imagined. It is therefore feasible for adept and versatile library technologists and informationists to
cross over into new domains.

Take as an example the data challenge associated with very large biomedical images. Recent
breakthroughs (Xu et al., 2017, 2020) in Focused Ion Beam Scanning Electron Microscopy (FIB-SEM)
technology have made it possible to reliably acquire nanometer scale 3D imaging from sizable volumetric
biomedical samples, each resulting in tens to hundreds of terabytes of raw image data. Nature recently
named enhanced FIB-SEM one of “Seven technologies to watch in 2023” (Eisenstein, 2023), claiming it
is a “quiet revolution” with the potential impact to be “on the same order of magnitude as the effort to
map the first human genome”. Enhanced FIB-SEM has already been used to generate landmark datasets
for neuroscience (Anthes, 2021; Scheffer et al., 2020) and cell biology (Xu et al., 2021) research. C Shan
Xu, a primary inventor of enhanced FIB-SEM, is now bringing the invention to enable discoveries in
translational and clinical research and has promptly generated stunning images showing how a cancer cell
evades attacks from the T cell, illustrated on the cover of Science (Andrews, 2022; Gregor et al., 2022;
Ritter et al., 2022).

Similar to many other breakthroughs in instrumentation, once the hardware is built and running,
FIB-SEM imaging’s bottleneck shifts to data, more specifically from data collection and storage to data
curation for the primary purpose of extracting insights and knowledge from data. In contrast to other
existing biomedical imaging, enhanced FIB-SEM poses an even more formidable challenge on efficiency,
timeliness, replicability, and reusability. For example, it has been estimated that FIB-SEM images taken
from a single cell may take up to 60 person-years to annotate manually (Heinrich et al., 2021). The very
large data volume has rendered comprehensive close reading and manual image annotation impractical. It
also takes away from scientists the ability to easily feel the data, because at the resolution this high, all
they can see are details without an overview. To make sense of these images, researchers must resort to
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artificial intelligence by applying supervised deep learning techniques to train a model from a few small
slices of manually annotated images, then use the model to run predictions against unannotated images.
Although deep learning algorithms and tools are widely available and routinely used to process other
biomedical images, prior successes do not easily transcend to enhanced FIB-SEM. The COSEM project,
the first of its kind, only recently published its FIB-SEM images and code, and claimed they have
achieved high accuracy and performance in segmenting those images. However, our initial tests showed
that the COSEM models could not accurately predict cell organelles from newly acquired FIB-SEM
images yet we don’t know why. At least for now, it appears to the domain scientists that AI based
FIB-SEM image segmentation remains a form of art that depends too heavily on intuitions and serendipity
to qualify as skilled trade, let alone predictable technology or even accurate science. But they cannot wait.
The newly built enhanced FIB-SEMs at Yale School of Medicine are pumping out image data at a
stunning speed, and scientists urgently need help to make sense of them. They are willing to work with
anyone who can help, librarians included.

The pressing needs from both sides and the associated sense of urgency have created a perfect moment to
loop librarians into cutting-edge science. However, if the history of the library community’s encounters
with digital publishing and the web is our guide, this moment can evaporate in no time if we don’t seize it
immediately.

1.3 Target Group and Ultimate Beneficiaries

This project primarily targets scientists who currently develop FIB-SEM technologies and/or use the
Focused Ion Beam Scanning Electron Microscopy Collaboration Core (F-SCC) facility at Yale School of
Medicine (YSM) to conduct research, starting with Professor C Shan Xu and Professor Angelique
Bordey. If we make enough progress, the target group may expand to all clients of F-SCC regardless of
their affiliations, and even further expand to scientists using FIB-SEM facilities elsewhere. Two co-PIs
working at Virginia Tech Libraries also directly benefit from this project by gaining access to not only the
most advanced biomedical imaging facility and its data but more importantly, the large group of scientists
using the facility to conduct cutting edge science. Our graduate students and collaborators at Virginia
Tech and beyond also directly benefit from such access.

Ultimate beneficiaries of this project include 1) Virginia Tech Libraries, which through our work can
claim to be a more qualified research partner; 2) other projects and groups handling very large images and
dataset, who can learn from the discoveries and outcomes of this project; 3) the broader academic and
research library community, if they follow our example and similarly build their own expertise and deep
partnership; 4) universities and institutes hosting these libraries, who will benefit from a more engaging,
creative, and research-oriented library; 5) patients who will benefit from the biomedical discoveries
originated from the expedited processing of nanoscale imaging; and 6) the general public and the whole
society, who will benefit from accelerated innovation and discovery.

1.4 Related Work and Preliminary Findings

Biomedical imaging is a very crowded field. Deep learning based image segmentation has already been
widely applied to magnetic resonance imaging (MRI) and other medical images and is one of the more
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mature AI applications. U-Net (Ronneberger et al., 2015a, 2015b) and 3D U-Net (Çiçek et al., 2016), the
most recognized and widely used deep learning algorithms for biomedical image segmentation, were
developed 7 to 8 years ago. They still maintain a dominant position in the field, largely due to their
maturity and superior performance. Software that implements these algorithms is widely available, e.g.,
via pytorch and tensorflow. Project MONAI integrates many medical AI tools into a suite, on top of
which various medical image processing pipelines can be built (Cardoso et al., 2022). However, our initial
attempt to use MONAI tools to label a tiny FIB-SEM crop did not work well. Primarily developed for
medical use, MONAI currently does not recognize nanoscale cell structures such as organelles.

In theory tools used to handle other images should remain effective for FIB-SEM imaging, but the latter
poses unique challenges largely due to its sheer size and complexity. Implementing a FIB-SEM
segmentation pipeline using tools like MONAI may seem trivial until the raw data arrives in hard drives:
many commonly used imaging tools won’t even be able to open these tiff images, let alone do anything
about them. They are so big that “out of memory” errors are encountered on a daily basis, even on a
supercomputer. Very large FIB-SEM datasets, therefore, present an archetypal test case on how to best
orchestrate scientists, data curators, cyberinfrastructure, software, and deep learning algorithms to achieve
best data-to-insight performance.

Enhanced FIB-SEM was initially used by neuroscientists to understand the brain. The intertwining of the
neurons made image processing very challenging and eventually compelled the scientists to collaborate
with Google Research to develop proprietary solutions for “connectomics”(Scheffer et al., 2020). When
the FIB-SEM was applied to cell biology research, data processing posed a different set of problems. The
COSEM project, also known as OpenOrganelle (Heinrich et al., 2021), is to date the only successful
attempt to segment all cell organelles from FIB-SEM images, and has been highlighted in the Nature
article as a major achievement (Eisenstein, 2023). The COSEM team has developed many tools and
utilities to handle very large image sets reformatted in an obscure data format called N5 (stands for not
HDF5) and also made their code, data, and documentation openly available. COSEM abides by all the
principles and best practices set forth by the FAIR principles (Wilkinson et al., 2016), but that does not
make it any easier to reproduce or reuse. Despite the fact that COSEM data has been openly available for
almost 2 years, insiders are not aware of any other independent attempt to reproduce its results. COSEM
insiders also described a seemingly chaotic real-world data flow, drastically different from the established
data lifecycle (Higgins, 2008). This made the librarian’s imagination of orderly conducted science sound
naive. Indeed, scientists may directly jump from any one stage of the data curation lifecycle to any other
stage based on needs and circumstances.

Our preliminary attempt to reproduce the COSEM paper on clusters at Virginia Tech’s Advanced
Research Computing (ARC) took more than 6 months to reach a point of no errors, but we are still not
sure if we have done everything correctly. According to the COSEM paper, one round of training could
take at least 7 to 16 months to complete on their GPU powered computer cluster, and they seemed to have
exclusive access to that cluster. Although our NVIDIA A100 powered cluster at ARC is faster than what
COSEM originally used, ours is a shared one that we must yield to other users at least every 3 days. We
also used VT Libraries’ smaller GPU cluster for debugging and testing. Instead of trying to run the
training from scratch, we decided to use their published checkpoints to run predictions on images cropped
from COSEM data not previously used for training. The results were not very good, suggesting the
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published checkpoints may lead to overfitting. We then ran predictions on FIB-SEM images acquired
elsewhere, the results were even worse to the point of unrecognizable. This seems to defeat the purpose of
the COSEM project. If previously trained checkpoints cannot be used to correctly segment new images,
why would anyone want to run training for such a long time? The training performance seems too poor
for practical use.

In retrospect, COSEM’s overall objectives could be too ambitious. It may have suffered the same naivety
of the DCC Data Lifecycle Model by assuming domain scientists follow a premeditated plan to do
research and would give data scientists an extended period of time to process the full set of data to
produce the best overall results in one attempt, e.g., predict every single cell organelle in high confidence,
then never need to revisit the raw data again. The data pipeline as published did not seem to accommodate
trial-and-error, considering the training had to be such an expensive endeavor. However, what really
happened during our initial discussion with Professor Bordey, a neuroscientist at Yale School of Medicine
studying epileptic seizure, was that her research started from several straightforward yet specific
questions that had to be answered first. She was only interested in a few nuclei, and only needed to know
the total number and the density of the nuclear pores (see Figure 1). Until she knows the answers to those
questions, she is not sure what her next set of questions would be. And if the already imaged sample does
not help to answer her questions, she may have to run another sample. This trial-and-error cycle makes
the collaboration and the data pipeline a lot more interactive and iterative than the COSEM paper
presented.

(a)                                                                        (b)
Figure 1. Labeling Nuclear Pores of a Mouse Brain Neuron (a) Label one image layer at a time using

Arivis Vision4D, an expensive yet clunky cloud- and web-based commercial tool (b) 3D labeling using
Paintera, an open source tool

We thought of modifying COSEM code to run training on a single cell organelle label (e.g., the outside of
the pore) at a time instead of the default setting of training for all organelle labels together, but that proved
to be more troublesome than we had time for. Our attempts on COSEM training also turned out to be very
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time-consuming and converged very slowly. In the end we developed our own code based on Tensorflow
for training and prediction, then labeled a handful of thin slices cropped from different sides of a nucleus
as the ground truth. We ran the training for a few days at a time, then added some new ground truth data,
trained some more, until the evaluation results no longer significantly improved with much more training
iterations. We then ran predictions on the whole nucleus to identify the pores, see Figure 2 and this video.
The prediction looks promising and has correctly identified many pores on the nuclear envelope, but there
are large, contiguous areas that should have been densely covered with pores (we did not know this until
consulting Professor Bordey) but were not identified (false negatives). Then there are quite some pores
incorrectly identified off the envelope (false positives). We then noticed that false negatives are mostly
concentrated on one orientation of the sample, causing us to posit that it might be the shading effects of
the microscopy’s backlight, even if we know very little about the physics and the mechanism of
FIB-SEM. But if our guesses were correct, and if all image processing techniques have been exhausted, a
possible remedy for the problem could be to rerun the imaging using a different sample but with different
backlight settings, which could better capture nuclear pores. We reached out to Prof. Xu, who did not
support our conjecture, but nevertheless suggested ways to verify. In this way, we started to engage in
scientific discussions librarians would otherwise not be involved in, and we truly sensed the comradery of
common curiosity in searching for answers.

Figure 2. Predicting Nuclear Pores of a Mouse Brain Neuron, also see here for the video of its 3D
rendition

In Oct 2022, our collaborators at Yale brought to our attention a BioRXiv preprint (Gallusser, Maltese,
Caprio, et al., 2022), published two months later in JCB (Gallusser, Maltese, Di Caprio, et al., 2022),
where the authors took a similar approach as we did and reported a significant performance boost against
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COSEM, which we had also experienced. They also trained for one label at a time, then applied the
so-called human-in-the-loop techniques (Holzinger, 2016), which applied human intuitions to add new
ground truth data to augment previously trained models. While the paper’s conclusions seemed
reaffirming and encouraging, we still hesitated to draw too broad a conclusion beyond its context, fearing
we might have not given the COSEM paper a fair hearing. Afterall, deep learning involves too many
variables and moving parts that an apple-to-apple comparison is often difficult to make.

At this stage, we have tried many different things. But we did not have high confidence that our
experiments were thorough or our results were reliable, but they did have generated more questions than
answers. We need a more thorough planning project to focus our future work on directions that can make
the most impact. Although our ultimate goal is to develop a well coordinated pipeline for semi-automatic
segmentation of very large FIB-SEM images, we first need to explore our problem space more thoroughly
in order to gain a good sense of what is possibl and what is not.

This proposal also draws insights from our prior IMLS funded project curating very large research
datasets. Our past experience has shown that 1) data curators/librarians should be deployed in the big data
pipeline as early as possible, even at the stage of physically acquiring data (Xie et al., 2015), because
knowledge in data acquisition often affords pertinent opportunities to optimize the data pipeline, as
illustrated by our previous conjecture on microscopy backlight . 2) Data curation should be driven
primarily by data use and reuse (Xie et al., 2015), which closely aligns librarians/data curators with
domain scientists. Long-term preservation and AI research and development are better performed as a
side effect of data use and reuse. 3) The efficiency, cost, and performance of extracting insights from data
are often the critical success factors for data curation and are closely associated with both the data format
(Wang & Xie, 2020) and the cyberinfrastructure options and choices (Xie & Fox, 2017). Trial-and-error,
experimenting and benchmarking are often the more effective way to achieve balanced results, therefore
this planning proposal.

2. Project Work Plan

Our ultimate goal is to develop a comprehensive pipeline for semi-automated, human-in-the-loop image
segmentation of FIB-SEM images. This project serves as its planning phase, in which critical aspects of
the pipeline are clearly identified and potential contradictions surfaced from past research can be clarified.
The project work revolves around five components of the pipeline: data collection, annotation, training,
augmentation, and performance.

2.1 Project Activities

Project Task 1 Data Collection (Lead: PI Xie): We will contract with F-SCC at YSM to acquire a new
FIB-SEM dataset from scratch. Today, most FIB-SEM images openly available were generated 3-6 years
ago or even earlier at HHMI Janelia Research Campus by C Shan Xu on the so-called FIB-SEM 1.0
machines. Xu’s team is now building a new generation of FIB-SEM at YSM, potentially capturing images
with different features. As discussed before regarding the nuclear pore false negatives, without in-depth
knowledge and experience with the machines and the sample preparation methods, we image processors
often lack the necessary intuition to expedite the training process. The remedy is to be fully engaged in
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the data collection, at least once. In addition, our preliminary work indicates that models trained from
COSEM do not seem to accurately predict organelles from images captured in a different batch, and there
may exist various artifacts such as backlight and shades that could interfere with AI-assisted
segmentation. To make a fair comparison, it is often necessary to create a new, reference dataset. The new
dataset collected from F-SCC will serve as the reference data. The F-SCC at YSM will closely coordinate
with the VT team in establishing the scientific goals for data acquisition and preparing data curators with
sufficient background knowledge in biology, physics, and chemistry to understand the process of sample
preparation, milling, and imaging.

Project Task 2 Annotation (Lead: PI Xie and co-PI Chen) aims to establish a reliable and efficient image
annotation environment capable of handling high resolution 3D images to create ground truth training
datasets. We will evaluate Paintera and MONAI on 1) VT Libraries’ GPU cluster and 2) Amazon Web
Service (AWS). We exclude many commercial products, e.g., Arivis Vision4D, not only because they can
be very expensive but also because they tend to lock in user data. In other words, if we annotate images in
their environment, we are also expected to run training in their environment, which is not ideal.
Fortunately both Paintera and MONAI are open source software. MONAI may also be run on ARC’s
Open OnDemand service, which is also widely available on many other supercomputer centers. We will
also teach students to use them and collect their reviews on usability.

Project Task 3 Training (Lead: PI Xie and co-PI Chen) aims to experiment with 3D UNet based FIB-SEM
image segmentation. We will continue our attempts to replicate and then interrogate the COSEM paper
(Heinrich et al., 2021) and its associated software, but using new data collected in Task 1 and then
annotated in Task 2. We intend to verify if our prior doubts on COSEM rationale is justified. If yes, if our
own Tensorflow based implementation compares favorably against the PyTorch based implementation
(Gallusser, Maltese, Di Caprio, et al., 2022). We will use ARC’s Nvidia DGX A100 cluster and/or the
Amazon cloud for this work. Both platforms are widely available at many research-intensive university
campuses for various deep learning projects.

Project Task 4 Augmentation (Lead: PI Xie and co-PI Chen) aims to experiment with human-in-the-loop
enhancements by replicating various image pre-processing and transfer learning procedures described in
(Gallusser, Maltese, Di Caprio, et al., 2022) using the newly acquired data. An already-trained model for
one label will be fine-tuned with additional annotations to speed up the training.

Pre-processing can significantly impact the model's performance. We will experiment with various
pre-processing techniques to determine their impact on the model's performance, including image
denoising, normalization, contrast enhancement, and histogram equalization. The model's results will be
compared with and without pre-processing to determine the impact of each pre-processing technique on
the model's performance.

Data augmentation is another technique that can improve the performance of deep learning models. This
project will use data augmentation techniques such as random rotations, flips, and translations to increase
the number of images available for training. The additional images generated through data augmentation
will help prevent overfitting and improve the model's generalization.
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Project Task 5 Benchmarking (Lead: PI Xie and co-PI Chen) Using the same dataset, image format, and
computing facility, we will parse, verify, and compare the previously published performance claims. It is
important to repeat the experiments on randomized sample regions to eliminate the survivorship bias in
the benchmarking. We will also evaluate the performance differences between different image labels (e.g.,
mitochondria vs. golgi vs. ER, etc.), cyberinfrastructure choices (public cloud vs. institutionally shared
GPU cluster vs. designated small GPU cluster), image formats (tiff vs. H5 vs. Zarr vs. Parquet), and
various curator intervention points. When benchmarking on the public cloud, we will gather cost
information.

2.2 Time, Financial, Personnel, and Other Resources

Time: All project activities will be spread over a 2-year period. For the detailed project timeline please
refer to the Schedule of Completion.

Budget: Our request to IMLS include the following direct cost breakdowns: $53,917 wages and fringe
benefits (including $36,231 for 1.5 GRA-year counted as student support), $25,000 for acquiring one
FIB-SEM dataset at F-SCC at YSM, and $22,948 tuition remission for the GRA which is also counted as
student support. After applying Virginia Tech’s federally negotiated indirect cost rate of 60%, our total
IMLS request is $149,216.

Personnel: Project staff include PI Zhiwu Xie, who will lead and manage the grant, and Co-PI Yinlin
Chen. The project will also hire a graduate research assistant for a period of one and a half years. The
research assistant is expected to come from the VT Computer Science Department. Under the direction of
PI and co-PI, the GRA will perform duties such as data collection, data preprocessing, annotation,
development and implementation of supervision and machine learning workflows, algorithm tuning, and
assistance in writing reports and research publications.

An advisory committee is established to advise this project. Members will participate in quarterly
one-hour meetings with the project team throughout the performance period. These meetings will allow
the VT project team to obtain feedback on project progress, discuss challenges and potential solutions,
and review preliminary research findings, white paper drafts, and publication drafts. Advisory committee
members include (alphabetically by last name):

● Angelique Bordey, Rothberg Professor of Neurosurgery; Co Vice Chair of Research,
Neurosurgery, Yale School of Medicine

● C. Shan Xu, Harvey and Kate Cushing Professor of Cellular & Molecular Physiology, Yale
School of Medicine

● Edward A. Fox, Professor, Department of Computer Science, Virginia Tech
● Martin Klein, Scientist & Team Lead of Research & Prototyping, Los Alamos National

Laboratory Research Library
● Nicholas Polys, Director of Visualization, Advanced Research Computing, Virginia Tech

Major Computing Resources: DGX Nodes and A100 Node at TinkerCliffs cluster and Open
OnDemand, both from VT Advanced Research Computing; Amazon Web Services
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Instrumentation Facility: Focused Ion Beam Scanning Electron Microscopy Collaboration Core
(F-SCC) at Yale University School of Medicine

2.3 Dissemination Plan

We plan to share our findings widely by publishing in academic journals and presenting at top
conferences in library science, information retrieval, artificial intelligence, and biomed image processing.
Potential venues include but are not limited to: JCDL, CNI, and/or IEEE Big Data. We will share all our
documentation and software code on github as well as VT’s institutional data repository
(https://data.lib.vt.edu/).

3. Project Results

Curating large datasets is essential in the medical field for advancing research, developing treatments, and
improving patient outcomes. This project is at the forefront of the biomedical field's digital transformation
by prototyping a pioneering pipeline for curator-in-the-loop deep learning to curate large biomedical
datasets. Through this project, we aim to equip library and archive professionals with practical skills in
data-intensive science, image processing, machine learning, and applied Artificial Intelligence, enabling
them to form deeper alliances with researchers and accelerate the transformation of libraries and archives
from knowledge service provider to collaborative research partner. The lessons learned from this project
have broad applications for handling vast datasets in other fields, such as engineering, physics, and
environmental science. This project's efforts will establish a foundation for future advancements in data
curation and analytics across all scientific research and innovation areas, promoting collaboration between
data-intensive stakeholders and advancing scientific research and innovation.

The project's emphasis on practical skills and cutting-edge technologies will have far-reaching
implications, enabling researchers in various fields to curate and process large research datasets more
efficiently. The project's deliverables, including a curated FIB-SEM image dataset, pipeline prototypes, a
comprehensive white paper, a publicly available documentation and software code repository on Github,
and technical support and consultation, will establish a foundation for future advancements in data
curation, analytics, and preservation.
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Curating Very Large Biomedical Image Datasets For Librarian-In-The-Loop Deep Learning 

Digital Products Plan 

 

Type 

This planning project will generate multiple datasets containing annotated 3D medical images created by 

human experts and machines. Moreover, prototype software tools will be developed to aid in creating and 

analyzing these images. Publications, presentations, and white papers will be prepared at various project 

stages to share progress and preliminary results. 

 

Availability 

The results of this project will be made widely available through multiple channels to ensure availability. 

These channels include depositing datasets, whitepapers, publications, and presentations in the Virginia 

Tech (VT) Scholarly Repository (https://vtechworks.lib.vt.edu/) and Virginia Tech Data Repository 

(https://data.lib.vt.edu/), hosted by the VT Libraries (https://lib.vt.edu/). The project's publications and 

datasets will be displayed on a dedicated website created and maintained by the Center for Digital 

Research & Scholarship at VT Libraries. 

 

This project website will serve as a comprehensive information source about the research, offering links 

to datasets, software tools, and publications generated throughout the study. A GitHub repository will be 

used to share software, scripts, and documentation produced during the project's planning phase. This 

repository will facilitate interaction between the project team and other parties interested in applying the 

software, scripts, and workflows in their own research. The VT Libraries has a history of effectively 

providing access to software tools and applications through GitHub (https://github.com/vtul). 

 

Access 

All publications and presentations will be made available through the VT Scholarly Repository. Datasets 

will be deposited in the Virginia Tech Data Repository. Furthermore, all software tools will be accessible 

via the project's GitHub page, which will feature repositories created for software, scripts, and 

documentation during the planning project. 

 

Rights will be assigned to this planning project output with a flexible reuse license based on the resource 

type. Software, scripts, and documentation will be a GNU open-source General Public License (GPL). 

Publications and presentations, when feasible, will be made accessible through a Creative Commons 

License, such as CC-BY. Datasets will be made available under a CC0 Public Domain Dedication license. 

 

Sustainability 

 

These resources become a permanent part of the VT Libraries' digital assets by depositing datasets, 

publications, and presentations into the VT Scholarly Repository and Virginia Tech Data Repository. 

Although long-term access to these materials is expected to be infinite, the project team commits to 

providing access to all products and data from this project for at least five years after the grant period 

ends. Software, scripts, and documentation will be available on GitHub as long as it remains a viable and 

free platform for accessing software and code. If GitHub no longer exists, the team will transfer the 

repositories to another available platform or archive the final version in the VT Libraries. 

https://vtechworks.lib.vt.edu/
https://lib.vt.edu/


Virginia Tech 

 

 

As a planning project, the software, scripts, and algorithms shared via GitHub will be supported for at 

least two years after project completion. However, these are not expected to be maintained through 

changes in language versions or the need to migrate to new tools. 

 



 

Organizational Profile 
 

Mission Statement 

Inspired by our land-grant identity and guided by our motto, Ut Prosim (That I May Serve), Virginia Tech 

is an inclusive community of knowledge, discovery, and creativity dedicated to improving the quality of 

life and the human condition within the Commonwealth of Virginia and throughout the world. (from 

https://vt.edu/about/facts-about-virginia-tech.html) 

 

Governance Structure 

Virginia Tech is Virginia’s most comprehensive university and a leading research institution. It has more 

than 37,000 undergraduate, graduate, and professional students. It manages a research portfolio of $556 

million and has over 2,000 instructional faculty members. It had a 1.89 billion operating budget in 2022-

23. (from https://vt.edu/about/facts-about-virginia-tech.html) 

 

Service Area 

The Commonwealth of Virginia, the nation, and the world community. 

 

Brief History 

Virginia Polytechnic Institute and State University, popularly known as Virginia Tech, officially opened 

on Oct. 1, 1872, as Virginia’s white land-grant institution. During its existence, the university has 

operated under three other legal names: Virginia Agricultural and Mechanical College since 1872, 

Virginia Agricultural and Mechanical College and Polytechnic Institute since 1896, and Virginia 

Polytechnic Institute since 1944. The state legislature sanctioned university status and bestowed upon it 

the present legal name effective June 26, 1970. 

 

Established in 1872 with 500 volumes, Virginia Tech Libraries now includes holdings of more than 2 

million volumes physically located in Newman Library and four branches. The library is a selective 

depository for federal documents and is an invited member of the Association of Research Libraries 

(ARL). The library’s mission is to invent the future of libraries at Virginia Tech. We honor tradition as we 

excel in our core mission to provide access to information. We acknowledge change as we adapt to 

address the new information needs and Open Web’s reframing of the academic and research enterprises in 

higher education. We embrace a diversity of thought and culture as we find solutions to information 

challenges when meeting user needs. Over the next decade, we anticipate seismic shifts in the nature of 

libraries across the globe. The form, function, and overall identity of the library as an institution will 

evolve. At Virginia Tech, we envision the library of the future emerging as a platform for student success 

and faculty innovation in a global context, a hub for strategic partnerships, and a regenerating entity that 

adapts to changing user needs and expectations. 
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